C0392: Detection of decay in citrus fruit using absorption and scattering properties

Delia Lorente*, Manuela Zude, Christian Regen, Florentino Juste, Juan Gómez-Sanchis, José Blasco
*delia.lorente.g@gmail.com

Introduction

 Early detection of fungal infections in citrus fruit still remains as one of the major economical problems in postharvest.

 Detection of infected fruit is performed manually by trained workers using dangerous UV lighting.

Objective

To detect decay lesions in citrus fruit by analysing the absorption (μ_a) and reduced scattering (μ'_a) coefficients of sound and damaged peel using laser-light backscattering imaging.

Results

 Farrell’s model described backscattering profiles accurately at the five laser wavelengths using μ_a and μ'_a ($R^2 \geq 0.982$).

 Overall accuracy reached a maximum value of 92.43% using the first eight features ranked with the MI feature selection method.

 The selected features provided good results, with a percentage of well-classified samples above 90% for both classes despite the similarity between sound and decaying skin.

Material and methods

 40 oranges cv. ‘Valencia late’ were infected with P. digitatum and stored until decay lesions had a diameter ≥ 25 mm.

 Backscattering images of sound and decaying surface areas of each fruit were acquired using laser diode modules emitting at five wavelengths (532, 660, 785, 830 and 1060 nm).

 Images had radial symmetry with respect to the light incident point, being reduced to one-dimensional profiles after radial averaging.

 Farrell’s diffusion theory model was used to fit the profiles and to estimate μ_a and μ'_a at each wavelength, resulting in ten features characterising each skin sample.

 A feature selection method based on mutual information (MI) was used to select the most relevant coefficients for decay detection.

 The selected coefficients were used as input vector for discriminating between sound and decaying skin using a LDA classifier.

Conclusion

These results show the high potential of the laser-light backscattering imaging technique as an alternative for online detection of early decay symptoms caused by P. digitatum fungi in citrus fruit.

Acknowledgements. This work was partially funded by the Instituto Nacional de Investigación y Tecnología (INIA) through research project RTA2012-00062-C04-01 with the support of European FEDER funds. Delia Lorente thanks INIA for the support through grant FPI-INIA number 42.