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Abstract

It can be observed that the teat cups migrate up the teat during milking process. To explain
this observation, it is supposed that there are short time intervals during the milking process
where the positive locking between the teat and teatcup does not exist. In this case, a flow is
formed between the teat and teat rubber which generates a force.
The force is considered on the basis of the flow between teat and inner wall of the teat cup
depending on various parameters. It is necessary to calculate and study the flow profile in
this  area.  The  flow  profile  is  calculated  by  the  Navier-Stokes  equations  in  cylindrical
coordinates. With the assumptions that the flow is stationary, the velocity components in r-
and phi- direction are zero and the flow is cylindrically. The solution of this equation gives us
the velocity in z-direction depending on the pressure, the radius and two more variables.
These variables can be calculated by using the no-slip condition on the boundary surface,
which says that the flow rate of a viscous fluid at a solid boundary surface is equal to zero or
is zero relative to the velocity of the boundary surface. In the size range of common teatcup
rubber the result is nearly a square flow profile.
Finally the force can be considered by a flow around body based on the viscosity of the fluid
flowing around it.  The calculation has to be done for  the force on the inner  wall  of  the
concentric  cylinders.  The force on the flow around  surface of  a  cylinder  is  given by an
equation depending of the cylinder radius, length, the viscosity of the flowing material and the
velocity. The velocity profile otherwise depends on the pressure difference. But with some
analytical transitions it can be shown that the force only depends on the flow rate which can
be calculated from the average of the velocity profile and the cross-sectional flow area. In
result  of  the  work,  the  acting  force  at  the  teat  can  be  calculated  for  a  given  pressure
difference.
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1 Introduction

The force is considered on the basis of the flow between teat and inner wall of the teat cup 
depending on various parameters. It is necessary to  calculate and study the flow profile in 
that area.  The teat and the teat rubber are assumed to be concentric cylinders. 
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2 Methods

2.1 Calculation of flow profiles

2.1.1 Flow in the space between two concentric cylinders

The flow profile is calculated by the  Navier-Stokes equations.  A transformation of  these
equations in cylindrical coordinates r, ϕ and z leads to
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In the next step, the flow is assumed to be a Hagen-Poiseuille flow. As a result, the following
assumption can be made.

1. The flow is stationary (all time derivatives are zero).
2. The velocity components in r- and ϕ - direction are zero.
3. The flow is cylindrically symmetric and fully developed.

With these assumptions, the equation simplifies to

1
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The soltuion of this differential equation is
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By taking into  account of the no-slip condition on the boundary surfaces exist two conditions
and with that aid the constants a and b can be calculated.
The no-slip condition states that the flow rate of a viscous fluid at a solid boundary surfaces
equal to zero or is zero relative to the velocity of the boundary surfaces. For the constants a
and b results
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Assuming a linear pressure drop along the flow direction it is valid that the partial derivative
∂ p
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 is equal to 
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. The function of the flow profile is given by
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or rather
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For closer consideration of the equation, the limit is determined by
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With the limit  value  lim
r→R A

ln (r /Ro )=0 is shown that the influence of the second term in

equation 6 is valid only by a  small inner radius R i and a large outer radius Ro. In the size
range of common teatcup rubber, the second term in that equation has a less influence. The
result is a nearly square flow profile. In figure 1 is shown the solution curve of equation 6 at
the  point  Δ z=70mm for  a  pressure-difference  Δ p=−7kPa ,  an  outer  radius
Ro=15,5mm and an inner radius Ri=15mm plotted as a function of the radius r.  The flow
profile is similar to the profile between two parallel plates.

Figure 1: flow profiles between two concentric cylinders

2.2 Force due to viscous flow

In this part the force is to be considered by a flow around body on the basis of viscosity of the
fluid flowing around it. The force applies to a flow-around surface is

F=η A
∂v
∂ x

. (9)
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2.2.1 Forces on an overflowed cylinder

In  this  example  the  force  is  examined  for  the  inner  wall  of  the  concentric  cylinders  as
described in the section before. The force on the flow around surface of a cylinder is given by

F=η2π Rcylinder l
∂ v
∂x

. (10)

Here  is  Rcylinder the  radius  and  l  the  length  of  the  cylinder.  For  calculating  the  force the
derivative of the velocity at the point Ri must be determined. The derivation of equation 6 is
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Applies the force to the inner cylinder
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By equation 13 it  can be seen that in the stationary case, the force is not depending by
length of the cylinder and also not by the viscosity of the medium flowing around it.

3 Results and Discussions

Figure 2: flow profiles of different elements
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Element Viscosity 

air 17.1 μPa s
neon 29.7 μPa s

hexane 0.320 mPa s
water 1 mPa s

Table 1: viscosity of plotted elements

To explain the seeming independence of the force of the viscosity the flow profile of various
viscous  substances  are  illustrated  in  figure  2.  The  pressure  difference  is  always
Δ p=17kPa . The viscosity of the individual substances is listed in chart 1. At otherwise

constant  parameters,  more viscous  substances forms flatter  flow profiles.  In  the  original

equation for force due to viscous flow F=η ⋅A v
x

, the force depends for example from the

viscosity and a given velocity. For getting the same flow profile by constant flow length Δ z

with a substance A and viscosity ηA and a substance B with viscosity  ηB=
ηA
2

,  the

pressure difference  Δ pA must be twice the pressure difference Δ pB . 
According to equation 13 the force depends from the increasing of the flow profile at the point
Ri and the pressure difference Δ p .
This means  that for substances with higher viscosity  η the pressure difference  Δ p
must be greater to get same flow profile like subtances with lower viscosity η , so that the
force is greater at higher viscose materials. 
The figure  3 shows the force as a function  of  the pressure difference.  The inner  radius
Ri=29,5mm and the outer radius Ro=30mm are constant. The equation shows that there exist
a linear connection in this case. 

Figure 3: force as a function of the pressure difference (left) and force as a function of the inner
cylinder radius (right) 

In a further analysis (Figure 3 right) the pressure difference is constant at Δ p=7kPa  and
the  outside  radius  is  Ro=30mm.  So  the  force  can  examined  as  a  function  of  various
differences  Ro-Ri. It can be seen that there is an extreme value in the range of R i=12 mm.
Analytically the extreme value results in the zeropoint of the derivative of equation 13 by the
inner radius Ri.
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With the adopted values Δ p=7kPa and Ro=30mm in figure 3  the extreme value is at a
force of F=-5.9 N for an inner radius Ri=12.2 mm.
Another  approach to analysis  the force is  the observation as a function of  the flow rate

Q=
dV
dt

. The flow rate can be calculated by the flow velocity and the cross-sectional flow

area.

Q=v ⋅ A (15)

In  the  considered  case  by  a  flow  between  two  concentric  hollow  cylinders,  the  cross-
sectional area corresponds to a circular ring.

A=π ⋅ (Ro
2−R i

2 ) (16)

Since the flow velocity is not constant on this surface, the volume flow is approximated with
an average velocity v̄ . For the following calculations is not the arithmetic average of the
velocity important. Necessary is the square average.

v̄=√ 1
Ro−Ri

∫
Ri

R o

v (r )2dr (17)

According to the first  part  (equation 6)  the results  a=
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 are

used in equation 18. For the flow profile in the intermediate space between two concentric
cylinders, the average flow rate can be determined by
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Parameter Value

η 17.1 μPa s
Ri 29.5 mm
Ro 30 mm
Δ p 7 kPa
Δ z 70 mm

Table 2: used values to calculate the average flow velocity

Assuming  the  values  listed  in  table  2,  the  calculation  of  the  average  flow  speed  is

v̄=133.46
m
s

.

The result is a volume flow of Q=0.01247
m3

s
=12.47

dm3

s
. If the flow rate is hold constant

and the radius of the outer cylinder is reduced gradually to the radius of the inner cylinder,
the  flow rate  between the the two cylinders will  increase.  By higher  velocities  the force
increase on the inner cylinder.

F=η2π Ri l
v̄
l
=η2R i

Q

(Ro
2−Ri

2)
(19)
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4 Conclusions

Figure 4: Force at constant volume flow as a function of the cylinder radius

Figure  4 illustrates the behavior  of  the function  according to  equation  19.  If  at  constant
volume flow  Ro is running to Ri the flow rate and the force (on basis of the proportional
connection) must strive towards infinity. If the total weight of a teat cup will be compensated
by this force, the distance a between the cylinders could calculated by the following equation.

a=Ro−Ri=√ 2ηRiQ
FG

+R i
2−R i (20)

With the suppose values a value of a=40nm had been estimated.
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